Printer friendly
"AcronymAttic.com

What does PAC stand for?

PAC stands for progression associated changes

Advertisement:

This definition appears rarely

See other definitions of PAC

Other Resources: Acronym Finder has 232 verified definitions for PAC

Samples in periodicals archive:

Tumors are not merely masses of neoplastic cells but complex tissues composed of cellular and noncellular elements. This review provides recent data on the main components of a dynamic system, such as carcinoma associated fibroblasts that change the extracellular matrix (ECM) topology, induce stemness and promote metastasis-initiating cells. Altered production and characteristics of collagen, hyaluronan and other ECM proteins induce increased matrix stiffness. Stiffness along with tumor growth-induced solid stress and increased interstitial fluid pressure contribute to tumor progression and therapy resistance. Second, the role of immune cells, cytokines and chemokines is outlined. We discuss other noncellular characteristics of the tumor microenvironment such as hypoxia and extracellular pH in relation to neoangiogenesis. Overall, full understanding of the events driving the interactions between tumor cells and their environment is of crucial importance in overcoming treatment resistance and improving patient outcome.
A large body of evidence suggests that atherosclerosis is an inflammatory disease, in which cytokines and growth factors play a major role in disease progression. The methanolic extracts of Sphaeranthus indicus as well as its active ingredient, 7-hydroxy frullanoide (7-HF), are shown to suppress LPS-induced cytokine production from mononuclear cells, and inhibit the expression of VCAM1, ICAM1 and E-selectin by TNF-α- stimulated HUVECs in a concentration-dependent manner. We tested the hypothesis that the inhibition of cytokines and adhesion molecules should attenuate the progression of atherosclerosis, independent of changes in the lipid profile. Studies were carried out in two animal models: a high fat-fed LDLr-/- mouse and a high fat-fed hyperlipidemic hamster. Methanolic extract of S. indicus was dosed to hyperlipidemic LDLr-/- at 100 and 300 mg (equivalent to 20 and 60 mg 7-HF)/kg body weight/ day for 8 weeks, and plasma lipids as well as aortic lesion area were quantitated. Hyperlipidemic hamsters were treated with one dose of 200 mg/kg/day. S. indicus extract treatment did not alter the lipid profile in both animal models, but reduced aortic lesion area in LDLr-/- mice and hyperlipidemic hamsters by 22 % and 45 %, respectively. Fenofibrate, included as a reference agent, decreased aortic lesions by 26 % in LDLr -/- mice and 84 % in hyperlipidemic hamsters, respectively, which was driven by massive reductions in proatherogenic lipoproteins. The lipid-independent anti-atherosclerotic activity of S. indicus was associated with the reductions in the circulating levels of MCP-1, TNF-α, and IL-6 via phosphorylation and degradation of IkB-α that prevents translocation of NF-kB in the nucleus to induce proinflammatory cytokines. Our findings demonstrate that anti-inflammatory agents that lower pro-inflammatory proteins inhibit the progression of atherosclerosis. The methanolic extract of S. inducus, currently being used to treat psoriasis, offer promise to benefit individuals who have high circulating pro-inflammatory cytokines, and predisposed to coronary artery disease.